

SIL2 and Performance Level d

Number of measurement axes: 1 or 2

■ Selectable measuring range: ± 5° to ± 90°

■ With preset function

Housing: aluminium or stainless steel

■ Protection type: up to IP69K

TÜV certified

KEY INFORMATION OVERVIEW

DESIGN & FUNCTION

The inclinometer measures the inclination in the gravitational field by means of MEMS sensors (Micro-Electro-Mechanical-System) with subsequent digitisation and linearisation via controllers. It has a stable aluminium housing (optionally stainless steel) and is highly-resistant to vibration and shock. Casting measures in the housing lead to the achievement of protection class IP 69K.

MEMS sensors are integrated circuits manufactured using silicon bulk micromechanical technology. Double capacities are formed with the aid of moveable micromechanical structures. If these structures are deflected in the case of acceleration, e.g. gravitational acceleration (g), this results in capacity changes, which are registered and further processed using measuring technology. The output voltage follows the function $U \sim g * \sin \alpha$. In this case, the angle α is the sensor's inclination angle measured against the g vector. These sensors measure precisely, have a long service life and are very robust. The measuring axes operate independently of each other.

The NBT has a redundant MEMS sensor system, which is used to make a plausibility check inside the inclinometer. Only one position datum is output; the plausibility of this is checked using the second system's position datum. Is the deviation of the two systems higher than a certain value, the sensor will enter the failsafe state.

FEATURES INTERFACE

The Profinet interface according to IEC 61158 / 61784 or PNO specifications order No. 2.712 and 2.722, version 2.3, is integrated into the inclinometer series NBT/S3.

Real time classes 1 and 3 are supported, i.e. Real Time (RT) and Isochronous Real Time (IRT) plus the requirements of conformance class C.The integrated 2-fold switch enables the TWK PROFINET inclinometer to be used in star, tree and line network topologies.

The PROFIsafe protocol is implemented according to the PRO-Flisafe Profile for Safety Technologie version 2.4 (PNO Order No. 3.192).

An exhaustive description of integration into a PROFINET network can be found in the NBT13912 manual.

- Real Time (RT) and Isochronous Real Time (IRT)
- Device exchange without interchangeable medium or programming device
- Prioritised start-up (Fast Start Up)
- Media redundancy possible
- Firmware update via Profinet

GENERAL INFORMATION

BEHAVIOUR IN THE EVENT OF A MEASURED VALUE CHANGE DUE TO AVERAGING

Dynamic, arithmetic averaging of the measured values is implemented in the inclinometer. This involves linear averaging over 1000 values, whereby a new value is recorded every millisecond. This results in a low-pass effect. In the event of an abrupt change in the measuring angle, the end value is reached after approx. 1 second. In the event of a linear change in the measuring angle, the relevant output signal follows after a delay of approx. 0.6 seconds. Other, e.g. shorter, values may be set depending on application conditions. However, the output signal then tends to have a higher noise factor.

BEHAVIOUR IN THE CASE OF LATERAL INCLINATION

For one axis sensors please consider the following: the measured axis is no longer detected in case of an inclination in a second axis (cross-axis inclination) greater than 15°. Meaning the sensor will go in an over flow stage (+180°). In the status word the bit "Out_of_range" is set. This feature is required since measuring accuracy decreases with increasing cross-axis inclination.

BEHAVIOUR IN THE CASE OF INTERFERENCE ACCELE-RATIONS (SHOCKS AND VIBRATIONS)

In certain applications, short-term shocks, impacts or vibrations can occur during normal operation. The resulting accelerations can exceed the measuring range of the internal MEMS sensor

(2.2 g). On occurrence of such an even, the position output value is set to -180° and in the status word the bit "Position_not_valid" is set. The control system is thereby notified that inclination measurement is not possible due to shock and vibration stresses. When these vibrations are temporarily limited, the sensor does not switch to the fail-safe state.

As the sensor does not enter the failsafe state, the user is required to ensure that the machine/system is in normal operating state during the period of time in which inclination measurement is not possible due to interference accelerations. Via his control system programme, the user must ensure that no dangers arise due to the application during this time.

As soon as there is no further interference acceleration due to shock and vibrations, regular inclination data are output again, and not -180°.

If the external disturbances exceed a certain time, the sensor enters the fail-safe state and needs to be reset with a power cycle.

When the external accelerations exceed the configured measurement range of the NBT/S3 but to do not exceed the measurement range of the internal MEMS sensor, the overflow value of +180° and the bit "Out_of_range" are send.

TECHNICAL DATA

ELECTRICAL DATA

Sensor system.MEMS acceleration sensorOperating voltage9 to 36 VDCNumber measuring axes1 or 2Measuring range \pm 5° to \pm 90° (selectable for example \pm 5°, \pm 10° \pm 85°, \pm 90°)Resolution0.01°Power consumption $<$ 3 WCurrentapprox. 90 mA (at 24V)Absolute accuracy $<$ \pm 0.5° (see below)Repeatability \pm 0.05°Noise \pm 0.05°Zero error \pm 0.5°Tolerance of the internal deviation monitoring \pm 2°Signal pathascending values with CCWReaction time1 s (for 100 % of the current end value)
MEASURING ACCURACY: DEVICE WITH 1 OR 2 AXES, ± 20° MEASURING ANGLE
Accuracy
MEASURING ACCURACY: DEVICE WITH 1 AXIS, ± 90° MEASURING ANGLE
Accuracy
Drift

TECHNICAL DATA

INPUT DATA *

2 byte status word 3x2 byte position data

OUTPUT DATA *

2 byte control word 2 byte preset word

PROFINET DATA

MAC address......88:A9:A7:BX:XXXX

The relevant, current MAC address is located on the model plate

Minimum transmission cycle 250 μs

DIAGNOSIS LEDS

LED 1 (VS, green)......Operating voltage available

LED 2 (L1, green) Link 1: Network connection established LED 3 (L2, green) Link 2: Network connection established

LED 4 (NS, green/red). Device Status & error modes

ENVIRONMENTAL DATA

Storage temp. range - 20 °C ... + 60 °C (due to packaging)

To vibration 100 m/s²; 10 ... 2000 Hz, DIN EN 60068-2-6

Humidity. ≤ 95% non-condensing

Salt mist test Test Kb according to IEC 60068-2-52

EMC STANDARDS

EN 61000-6-4:2006 + A1:2011	EMC Part 6-4: Generic standards-Emission standard for industrial environments
EN 61000-6-2:2005	EMC Part 6-2: Generic standards-Immunity for industrial environments
EN 61000-4-2:2009	EMC Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test
EN 61000-4-3:2006 A1:2008 + A2:2010	EMC Part 4-3: Testing and measurement techniques - Radiated, radio frequency. electromagnetic field immunity test
EN 61000-4-4:2004	EMC Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test
EN 61000-4-5:2006	EMC Part 4-5: Testing and measurement techniques - Surge immunity test
EN 61000-4-6:2009	EMC Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
EN 61000-4-8:2010	EMC Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test. Power frequency magnetic field immunity test: 30 A/m, test criterion A, 100 A/m, test criterion B
EN 61000-4-29:2000	EMC Part 4-8: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations on d.c. input power port immunity tests
IEC 61326-3-2:2018	Electrical equipment for measurement, control and labortory use - EMC requirements Part 3-2: Immunity for safety-related systems and for equipment intended to perform safety related functions (functional safety) - industrial applications with specified electromagnetic environment

^{*} From the point of view of the control system

TECHNICAL DATA

SAFETY DATA

SFF = 97.3 % HFT = 0

SIL₂

According to ISO 13849-1.... . MTTFd = 100 years (calculated 211.5 years)

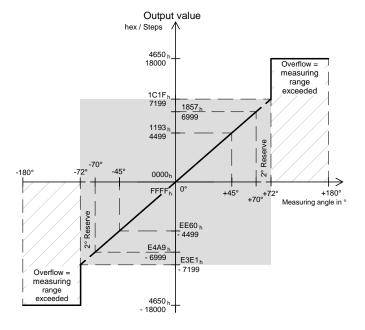
DCavg = 96.7 % Categorie 2 Performance Level D

..... Maximum service life: 20 years

PROGRAMMABLE PARAMETERS (REFER TO HANDBOOK NBT13912 FOR DETAILS)

..... Switches parameterisation on / off Preset Sets the output value of x, y, or z

Firmware download Sets NBT in the state "firmware download mode"


PRODUCT CHARACTERISTICS

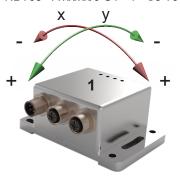
CHARACTERISTIC CURVE

Example ± 70° ≜ 2 x 7000 steps with resolution 0.01°

Data format Signed 16-bit

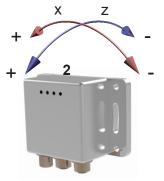
When exceeding the selected range (here \pm 70°), plus about 2° the output value is set to 4650_{hex} (= $18,000_{dez}$ = 180°) in order to signal the controller that the inclinometer is tilted out of the selected scale.

PRODUCT CHARATERISTICS

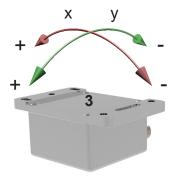

INSTALLATION POSITIONS AND MEASUREMENT AXIS ASSIGNMENT

Installation position TOP 1... 6 of the 1- or 2-axis inclinometer must be taken into consideration on assignment or selection of the measurement axes. The installation positions specified below define the **measurement axes** and measuring range centre for x, y and z. Which of housing surfaces 1 to 6 is to point upwards must be specified in the order number for the NBN. The installation position is clearly marked on each device ('TOP'). This surface/edge must point upwards.

The definition of the side of the housing facing upwards (TOP1 to 6) refers to the side of the connector outlet. This applies to


INSTALLATION POSITION TOP 1

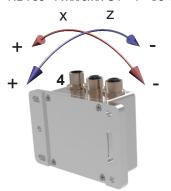
NBT65 - A xx/xx/0 C1 - 1 - S3 T01


INSTALLATION POSITION TOP 2

NBT65 - A xx/0/xx C1 - 2 - S3 T01

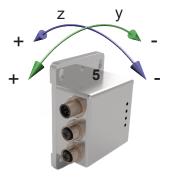
INSTALLATION POSITION TOP 3

NBT65 - A xx/xx/0 C1 - 3 - S3 T01

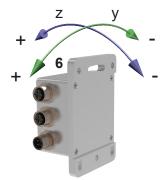

design form 65 (pictures below) and also to design form 90, e.g. Side TOP5 is to the left of the connector side, TOP4 = connector side, etc. Only 2 of 3 axes are selectable. The installation position determines these axes x, y and z.

Signal path: with the CW setting, the prefixes in the figures below specify the direction of rotation in which the output values increase positively during inclination measurement. This is accordingly reversed with the setting CCW.

See page 8: Available types (standard).

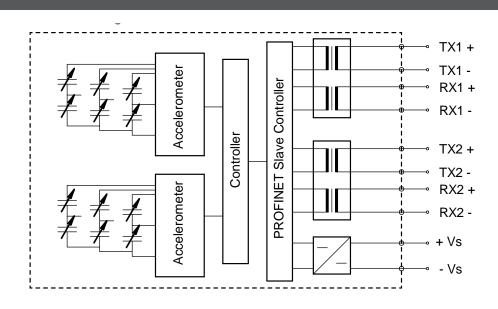

INSTALLATION POSITION TOP 4

NBT65 - A xx/0/xx C1 - 4 - S3 T01


INSTALLATION POSITION TOP 5

NBT65 - A 0/xx/xx C1 - 5 - S3 T01

INSTALLATION POSITION TOP 6


NBT65 - A 0/xx/xx C1 - 6 - S3 T01

TECHNICAL DATA

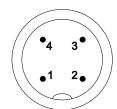
PRINCIPAL CIRCUIT DIAGRAM

ELECTRICAL CONNECTION

ELECTRICAL CONNECTION

PROFINET CONNECTOR, 2 X M12, D-CODED, SOCKET/FEMALE

ΡI	N	١.								Function
1									. '	TX+
2										RX+
3									. '	TX-
4										RX-



PROFINET CABLE OUTPUT (2X)

Colour*	Function
Yellow	TX+
White	RX+
Orange	TX-
Blue	RX-

SUPPLY CONNECTOR, M12, A-CODED, PINS/MALE

ΡI	Ν	١.								Function
1										+UB (+24 VDC)
2										not used
3										-UB (0 VDC)
4										not used

SUPPLY CABLE OUTPUT

Colour	Function
White	+UB (+24 VDC)
Brown	UB (0 VDC)

REMARK

Only use shielded cable for power supply and PROFINET.

^{*} Industrial Ethernet cable colours according to ISO / IEC 8802-3.

ELECTRICAL CONNECTION

CABLE OUTPUT PROFINET (OPTIONAL)

Min. bend radius 5 x d fixed installation, 10 x d freely movable

CABLE OUTPUT POWER SUPPLY (OPTIONAL)

Outer diameter 6 mm

Min. bend radius 6 x d fixed installation, 15 x d freely movable

ORDER CODE FORMAT

NBT	90 - A 20 / 20 /	0 V S3	-1- S 3 T 01 STANDARD VERSION				
NBT	Inclination sensor with	PROFINET interface					
90	Design form	65 90	Design form 65 mm Design form 90 mm				
Α	Housing material***	A V	Aluminium (see page 10) Stainless steel 1.4404				
20	Measuring range**	± x°	x-axis (see below: Available types. Other types on request.)				
20	Measuring range**	± y°	y-axis (see below: Available types. Other types on request.)				
0	Measuring range**	± z°	z-axis (see below: Available types. Other types on request.)				
V	Behaviour during disturbance acceleration	V G	Standard (see <u>page 2</u> "interference accelerations") Dynamic compensation with gyroscope data (on request)				
S3	Profile	S3	SIL2 / PLd certified according to this data sheet				
1	Installation position	1, 2, 3, 4, 5, 6	TOP position: see below: Available types and page 5				
s	Electrical connection***	S K	Connector M12 Cable				
3	Electrical connection	1 2 3 X	1 x connector (Hybrid connector) 2 x connector (1 x PROFINET, 1 x power supply) 3 x connector (2 x PROFINET, 1 x power supply) Cable length in m (for cable output)				
Т	Output	Т	PROFINET				
01	Electrical and mechanical variants*	01	Standard				

AVAILABLE TYPES

(Standard versions. Other measuring ranges and installation positions on request)

NBTxx-A20/20/0 V S3-1-xx T01 NBTxx-A90/ 0/ 0 V S3-2-xx T01

^{*} The basic versions according to the data sheet bear the number 01. Deviations are identified with a variant number and are documented at TWK.

^{**} The measuring ranges for the various measurement axes can be selected in 5° steps, whereby it must be noted that only 2 axes can be used at any one time. For the undesired axis please choose '0'. Accuracy differences may possibly arise in terms of the compatibility of the measuring ranges or the measuring angles. Please talk to one of our employees.

^{***} Aluminium housing with connector M12. When ordering a stainless steel housing, the connectors or cable glands will be of the same stainless steel quality or higher.

ACCESSORIES (TO BE ORDERED SEPARATELY)

MATING CONNECTORS

Order number, Datasheet	Туре	Design & wire fixing	Housing- material	Cable ø & wire size	Shielding & IP grade
STK4GP81	M12-D,	Straight,	Die-cast zinc	5 – 8 mm	On housing
STK14570	4-pole, male	screws	nickel-plated	≤ 0.75 mm ²	IP67
STK4GP110	M12-D,	Straight,	Stainless	5.5 – 8.6 mm	On housing
STK14569	4-pole, male	screws	steel 1.4404	≤ 0.75 mm ²	IP67
STK4GS60	M12-A,	Straight,	Die-cast zinc	4 – 6 mm	On housing
STK14572	4-pole, female	screws	nickel-plated	≤ 0.75 mm ²	IP67
STK4GS104	M12-A,	Straight,	Stainless	5.5 – 8.6 mm	On housing
STK14571	4-pole, female	screws	steel 1.4404	≤ 0.75 mm ²	IP67
STK4WP82	M12-D,	Angled,	Die-cast zinc	5 – 8 mm	On housing
<u>STK14676</u>	4-pole, male	screws	nickel-plated	≤ 0.75 mm ²	IP67
STK4WS61	M12-A,	Angled,	Polyamid (PA)	4 – 6 mm	- (due to PA)
STK14675	4-pole, female	screws		≤ 0.75 mm ²	IP67

CONNECTING CABLE - PROFINET

KABEL-xxx-114 Industrial Ethernet data cable with M12 connectors, D-coded, moulded on at both ends,

xxx = length in meters, standard lengths: 1, 2, 3, 5, 10, 15 and 20 m, see data sheet KBL14673

KABEL-xxx-118 Industrial Ethernet data cable with M12 connector to RJ 45, IP 20,

xxx = length in meters, standard lengths: 2, 3, 5, 10, 15 and 25 m, see data sheet KBL14655

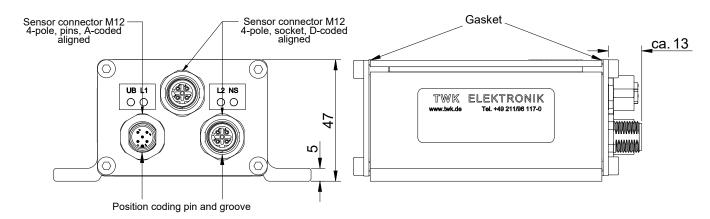
CONNECTING CABLE - POWER SUPPLY

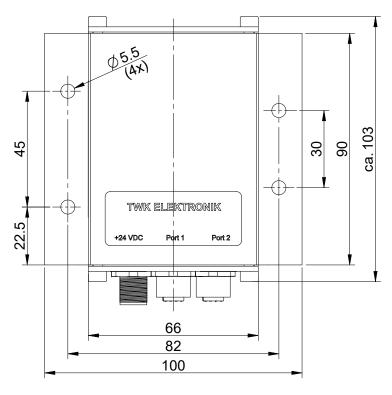
KABEL-xxx-191 With moulded M12 connector, A-coded, straight, 2. side open, xxx = length in meters, standard lengths: 2, 5, 10, 15, 20 and 25 m, see data sheet <u>KBL13411</u>

DOCUMENTATION

DOCUMENTATION

The following documents plus the GSD file and bitmap can be found in the Internet under www.twk.de/en in the documentation area, model NBT/S3


Data sheet	NBT13911
Manual	NBT13912
Certificate PROFINET	NBT14715
Certificate PROFIsafe	NBT14717
Certificate TÜV	NBT15395
GSD file	GSD file NBT/S3
Declaration of Conformity	ZE16569
Safety Library (VDMA/Sistema)	Safety Library
Reach-compliant	QS15286
RoHS-compliant	QS13284
Installation instructions	AN16169

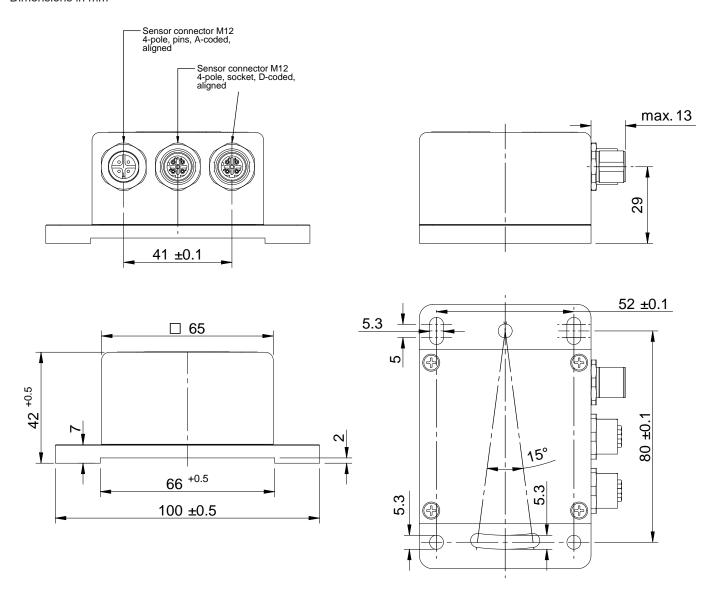


INSTALLATION DRAWINGS

DESIGN FORM 90, ORDER NUMBER: NBT90-AXX/XX/XXVS3-X-S3T01 - STANDARD DESIGN FORM

Dimensions in mm

MATERIALS USED


Sealing rings PTFE / NBR

INSTALLATION DRAWINGS

DESIGN FORM 65, ORDER NUMBER: NBT65-A XX/XX/XXVS3-X-S3T01 - NON-STANDARD DESIGN FORM

Dimensions in mm

The installation is done via round and slotted mounting holes for M5 bolts. The inclination sensor can be mechanically adjusted up to approx. ± 7.5° via the slots. Fasteners are not enclosed in the scope of delivery. When using the long holes additional security measures must be taken to prevent the device from any accidental displacement.

NOTE

The connectors of the stainless steel version are not aligned.

MATERIALS USED

Aluminium housing	. AlMgSi1
Stainless steel housing	. 1.4404
Connector/cable gland	. Die-cast zinc, nickel-plated (when ordering a stainless steel housing, the connectors or
	cable glands will be of the same stainless steel quality or higher.)
Sealing rings	. NBR